Δέντρο στην Αφρική με καρπούς που περιέχουν αλκοόλ:
Θέματα φυσικής στο γυμνάσιο και στο λύκειο με χρήση των ΤΠΕ. Θέματα εκπαίδευσης, ενημέρωσης και ό,τι άλλο φαίνεται χρήσιμο.
Ο καιρός στα Γιάννενα
Τετάρτη 9 Ιουνίου 2010
Τρίτη 1 Ιουνίου 2010
Η πειραματική φυσική και το 4ο Θέμα της Φυσικής Κατεύθυνσης στις πανελλαδικές 2010
ΘΕΜΑ Δ
Θέλουμε να μετρήσουμε πειραματικά την άγνωστη ροπή
αδράνειας δίσκου μάζας m=2 kg και ακτίνας r=1 m. Για το
σκοπό αυτό αφήνουμε τον δίσκο να κυλίσει χωρίς ολίσθηση
σε κεκλιμένο επίπεδο γωνίας φ=30° ξεκινώντας από την
ηρεμία. Διαπιστώνουμε ότι ο δίσκος διανύει την απόσταση
x=2 m σε χρόνο t=1 s.
Δ1. Να υπολογίσετε τη ροπή αδράνειάς του ως προς τον
άξονα που διέρχεται από το κέντρο μάζας του και είναι
κάθετος στο επίπεδό του.
Μονάδες 7
Δ2. Από την κορυφή του κεκλιμένου επιπέδου αφήνονται να
κυλίσουν ταυτόχρονα δίσκος και δακτύλιος ίδιας μάζας
Μ και ίδιας ακτίνας R. Η ροπή αδράνειας του δίσκου
είναι Ι1=(1/2)MR^2 και του δακτυλίου Ι2=ΜR^2 ως προς τους
άξονες που διέρχονται από τα κέντρα μάζας τους και
είναι κάθετοι στα επίπεδά τους.
Να υπολογίσετε ποιο από τα σώματα κινείται με τη
μεγαλύτερη επιτάχυνση.
Μονάδες 4
Θέλουμε να μετρήσουμε πειραματικά την άγνωστη ροπή
αδράνειας δίσκου μάζας m=2 kg και ακτίνας r=1 m. Για το
σκοπό αυτό αφήνουμε τον δίσκο να κυλίσει χωρίς ολίσθηση
σε κεκλιμένο επίπεδο γωνίας φ=30° ξεκινώντας από την
ηρεμία. Διαπιστώνουμε ότι ο δίσκος διανύει την απόσταση
x=2 m σε χρόνο t=1 s.
Δ1. Να υπολογίσετε τη ροπή αδράνειάς του ως προς τον
άξονα που διέρχεται από το κέντρο μάζας του και είναι
κάθετος στο επίπεδό του.
Μονάδες 7
Δ2. Από την κορυφή του κεκλιμένου επιπέδου αφήνονται να
κυλίσουν ταυτόχρονα δίσκος και δακτύλιος ίδιας μάζας
Μ και ίδιας ακτίνας R. Η ροπή αδράνειας του δίσκου
είναι Ι1=(1/2)MR^2 και του δακτυλίου Ι2=ΜR^2 ως προς τους
άξονες που διέρχονται από τα κέντρα μάζας τους και
είναι κάθετοι στα επίπεδά τους.
Να υπολογίσετε ποιο από τα σώματα κινείται με τη
μεγαλύτερη επιτάχυνση.
Μονάδες 4
- Επιλύοντας το Δ1 ζήτημα του θέματος, όπως αυτό δόθηκε, υπολογιζεται η ροπή αδράνειας Ι του δίσκου μέσα από τις πειραματικές μετρήσεις σύμφωνα και με την αντίστοιχη εργαστηριακή άσκηση (υπολογισμός ροπής αδράνειας Ι κυλίνδρου) που όλοι διδάσκουμε στο σχολείο. Η τιμή της ροπής αδράνειας του δίσκου βρίσκεται ίση με 0,5Kg*m^2.
- Συνεχίζοντας στο ζήτημα Δ2 του θέματος δίνεται ο τύπος "Ι1=(1/2)MR^2" για τον καθορισμό της ροπής αδράνειας του δίσκου. Αν τώρα χρησιμοποιήσουμε αυτόν το θεωρητικό τύπο για το δίσκο του προηγούμενου ζητήματος η ροπή αδράνειας παίρνει τη θεωρητική τιμή Ι=1Kg*m^2.
- Συμπέρασμα: θεωρητική τιμή Ι=1Kg*m^2, πειραματική τιμή Ι=0,5Kg*m^2. Αυτό σημαίνει σφάλμα μέτρησης 50%.
- Όλοι μας λέμε στους μαθητές μας ότι οι μετρήσεις μας γίνονται αποδεκτές με μέγιστο σφάλμα της τάξης του 10%. Η επιτροπή που επέλεξε τα θέματα δεν το γνώριζε αυτό;
Θα μου πείτε ότι επέλεξε τιμές που δίνουν εύκολα αριθμητικά αποτελέσματα αλλά αρκεί αυτό για δικαιολογία; - Θα μπορούσαν να δοθούν τιμές οι ακόλουθες τιμές:
x=1,7 m και χρόνος t=1 s που θα μας έδιναν:
αcm=3,4m/s^2, αγων=3,4rad/s^2, T=3,2N και τέλος
Ι=32/34Kg*m^2=16/17Kg*m^2=0,94Kg*m^2. - Οι προηγούμενες τιμές προέκυψαν χρησιμοποιώντας από το excel και την αναζήτηση στόχου από τα εργαλεία του.
Εγγραφή σε:
Αναρτήσεις (Atom)